铝学院
  • 0
  • 0

铝及铝合金阳极氧化膜形成机理

|
2013-04-27 10:01:53
|
18477 浏览
|

  铝及铝合金阳极氧化的电解液一般为具有中等溶解能力的酸性溶液,如硫酸、草酸等。将铝件作为阳极,铅板作为阴极,通以直流电,电极反应为水的放电,生成初生态原子氧[O]。由于[O]具有很强的氧化能力,在强大的外电场力作用下,会从电解液/金属界面上向内扩散,与铝作用形成氧化物并放出大量的热。反应多余的氧则在阳极以气体状态析出。

    由于在酸性溶液中氧化膜的生成和溶解是同时进行的,只有当膜的生成速度大于膜的溶解速度时,膜才不断增厚。其形成过程可利用阳极氧化测得的电压一时间曲线进行分析,如图7-1所示。

    整个阳极氧化的电压一时间曲线大致可以分为三段

    ①第一段:无孔层形成通电开始的几至十几秒时间内,电压随时间急剧上升至最大值,该值称为临界电压(或形成电压)。说明在阳极上形成了连续的、无孔的薄膜层(阻挡层)。此膜具有较高的电阻,因此随着膜层的加厚,电阻加大,槽电压急剧直线上升。无孔层的出现阻碍了膜层的继续加厚,其厚度与形成电压成正比,与氧化膜在电解液中的溶解速度成反比。在普通硫酸阳极氧化时,采用13~18V槽电压,则无孔层厚度约为0.Ol~0.Ol5μm。该段的特点是氧化膜的生成速度远大于溶解速度。临界电压受电解液温度的影响很大,温度高,电解液对膜层的溶解作用强,无孔层薄,临界电压较低。

    ②第二段:膜孔的出现阳极电位达到最高值以后,开始下降,其下降幅度为最大值的10%~l5%。这是由于电解液对膜层的溶解作用,使氧化膜最薄的局部产生孔穴,电阻下降,电压也随之下降。氧化膜有了孔隙之后,电化学反应可继续进行,氧化膜继续生长。

图7-1 阳极氧化特征曲线

  ③第三段:多孔层的增厚此段的特征是氧化时间大约20s后,电压开始趋于平稳。此时,阻挡层生成速度与溶解速度达到平衡,其厚度保持不变,但氧化反应并未停止,氧化膜的生成与溶解仍在每个孔穴的底部继续进行,使孔穴底部向金属内部移动,随着时间的延长,孔穴加深形成孔隙和孔壁。由于孔隙内电解液的存在,导电离子便可在此畅通无阻,因此在多孔层的建立过程中,电阻值的变化并不大,电压也就无明显的变化,反映在特性曲线上是平稳段。多孔层的厚度取决于工艺条件,主要因素为温度。在阳极氧化过程中,由于各种因素的影响,使溶液温度不断提高,对膜层的腐蚀作用也随之加大,不仅孔底,也使孔口处膜层及外表面膜层的腐蚀速度加大,因此多孔层厚度增长变慢。当孔口膜层的腐蚀速度与孔底处的成膜速度相等时,多孔层的厚度就不会再继续增加,该平衡到来的时间越长,则氧化膜越厚。

    在氧化膜的生长过程中,电渗起着重要的作用,使电解液在膜孔内不断循环更新。电渗产生的原因可解释为:在电解液中水化了的氧化膜表面带负电荷,而在其周围的溶液中紧贴着带正电荷的离子(如由于氧化膜的溶解而存在大量的Al3+,因电位差的影响,带电质点相对于固体壁发生电渗作用,即贴近孔壁带正电荷的液层向孔外部流动,而外部新鲜的电解液沿孔的中心轴流入孔内,促使孔内的电解液不断更新,从而使孔加深扩大,如图7-2所示。沉积不同。

图7-2 电渗流过程示意

免责声明:本文来源于网络,版权归原作者所有,且仅代表原作者观点,转载并不意味着铝加网赞同其观点,或证明其内容的真实性、完整性与准确性,本文所载信息仅供参考,不作为铝加网对客户的直接决策建议。转载仅为学习与交流之目的,如无意中侵犯您的合法权益,请及时与0757-85529962联系处理。

全部评论(0
登录,参与评论前请先登录
暂无评论
保存海报 微信好友 朋友圈 QQ好友
提示
确定